
| ds2 = | ┌ 1 0 0 ┐ │ 0 1 0 │ └ 0 0 1 ┘ | ┌ x ┐ │ y │ └ z ┘ | ┌ x ┐ │ y │ └ z ┘ | = | ┌ 1x+0y+0z ┐ │ 0x+1y+0z │ └ 0x+0y+1z ┘ | ┌ x ┐ │ y │ └ z ┘ | = | ┌ x ┐ │ y │ └ z ┘ | ┌ x ┐ │ y │ └ z ┘ | = | x2 + y2 + z2 | (equation 4) | |
| gμν = | ┌ 1 0 0 ┐ │ 0 1 0 │ └ 0 0 1 ┘ | (equation 5) | 
| gμν = | ┌ ∂x/∂x ∂x/∂y ∂x/∂z ┐ │ ∂y/∂x ∂y/∂y ∂y/∂z │ └ ∂z/∂x ∂z/∂y ∂z/∂z ┘ | (equation 6) | 
| A = | ┌ a11 a12 a13 ┐ │ a21 a22 a23 │ └ a31 a32 a33 ┘ | (equation 7) | 
| V = | ┌ v1 ┐ │ v2 │ │ v3 │ └ v4 ┘ | 
| aij | = | ∂xi ---- (equation 12) ∂xj | 
| x'i | = | Σ | ∂x'i ---- xj (equation 13) ∂xj | 

| ┌ cos(ϕ) -sin(ϕ) ┐ └ sin(ϕ) cos(ϕ.) ┘ | 
| ┌ x1' ┐ └ x2' ┘ | = | ┌ cos(ϕ) -sin(ϕ) ┐ └ sin(ϕ) cos(ϕ.) ┘ | ┌ x1 ┐ └ x2 ┘ | 
| A'i | = | Σ | ∂x'i ---- Aj (equation 16) ∂xj | 
| A'i | = | Σ | ∂xj ---- Aj (equation 17) ∂x'i | 
| ┌ 1 0 0 ┐ │ 0 1 0 │ └ 0 0 1 ┘ | 
| ┌ -xy -y2 ┐ └ x2 xy ┘ | 
| A'ij | = | Σ Σ | ∂x'i ∂x'j ----------- Akl (equation 18) ∂xk∂xl | 
| C'ij | = | Σ Σ | ∂xk ∂xl ----------- Ckl (equation 19) ∂x'i∂x'j | 
| ds2 = | ┌ -1 0 0 0 ┐ │ 0 1 0 0 │ │ 0 0 1 0 │ └ 0 0 0 1 ┘ | ┌ ct ┐ │ x │ │ y │ └ z ┘ | ┌ ct ┐ │ x │ │ y │ └ z ┘ | = | ┌ -ct+0x+0y+0z ┐ │ 0ct+1x+0y+0z │ │ 0ct+0x+1y+0z │ └ 0ct+0x+0y+1z ┘ | ┌ ct ┐ │ x │ │ y │ └ z ┘ | = | ┌ -ct┐ │ x │ │ y │ └ z ┘ | ┌ ct ┐ │ x │ │ y │ └ z ┘ | = | -c2 t2 + x2 + y2 + z2 | ||

| c2 | = | 1 ---- ε0 μ0 | 
| x' | = | x-vt ------------- √(1-v2/c2) | 
| y' | = | y | 
| z' | = | z | 
| t' | = | t - (v/c2).x ------------- √(1-v2/c2) | 
| γ | = | 1 ------------- √(1-v2/c2) | 
| x' | = | γ | (x-vt) | 
| y' | = | y | 
| z' | = | z | 
| t' | = | γ | (t - (v/c2).x) | 
| ds2 = | ┌ -1 0 0 0 ┐ │ 0 1 0 0 │ │ 0 0 1 0 │ └ 0 0 0 1 ┘ | ┌ ct ┐ │ x │ │ y │ └ z ┘ | ┌ ct ┐ │ x │ │ y │ └ z ┘ | = | ┌ -ct+0x+0y+0z ┐ │ 0ct+1x+0y+0z │ │ 0ct+0x+1y+0z │ └ 0ct+0x+0y+1z ┘ | ┌ ct ┐ │ x │ │ y │ └ z ┘ | = | ┌ -ct┐ │ x │ │ y │ └ z ┘ | ┌ ct ┐ │ x │ │ y │ └ z ┘ | = | -c2 t2 + x2 + y2 + z2 | ||
| ┌ g11 g12 g13 g14 ┐ │ g21 g22 g23 g24 │ │ g31 g32 g33 g34 │ └ g41 g42 g43 g44 ┘ | 
| ┌ g11 g12 g13 g14 ω15 ┐ │ g21 g22 g23 g24 ω25 │ │ g31 g32 g33 g34 ω35 │ │ g41 g42 g43 g44 ω45 │ └ ω51 ω52 ω53 ω54 ω55 ┘ | 

| gμν = | ┌ -(1-R/r) 0 0 0  ┐ │ 0 1/(1-R/r) 0 0 │ │ 0 0 r2 0 │ └ 0 0 0 r2sin2(θ) ┘ | 
